2015年11月14日星期六

the Limitations of metal oxide varistors application

metal oxide varistors application inside a TVSS device does not provide equipment with complete power protection. In particular, a MOV device provides no protection for the connected equipment from sustained over-voltages that may result in damage to that equipment as well as to the protector device. Other sustained and harmful overvoltages may be lower and therefore ignored by a MOV device.
A varistor provides no equipment protection from inrush current surges (during equipment startup), from overcurrent (created by a short circuit), or from mov varistor (also known as a brownout); it neither senses nor affects such events. Susceptibility of electronic equipment to these other power disturbances is defined by other aspects of the system design, either inside the equipment itself or externally by means such as a UPS, a voltage regulator or a surge protector with built-in overvoltage protection (which typically consists of a voltage-sensing circuit and a relay for disconnecting the AC input when the voltage reaches a danger threshold).

Comparison to other transient suppressors
Another method for suppressing voltage spikes is the transient-voltage-suppression diode (TVS). Although diodes do not have as much capacity to conduct large surges as MOVs, diodes are not degraded by smaller surges and can be implemented with a lower "clamping voltage". MOVs degrade from repeated exposure to surges and generally have a higher "clamping voltage" so that leakage does not degrade the MOV. Both types are available over a wide range of voltages. MOVs tend to be more suitable for higher voltages, because they can conduct the higher associated energies at less cost.
Another type of transient suppressor is the gas-tube suppressor. This is a type of spark gap that may use air or an inert gas mixture and often, a small amount of radioactive material such as Ni-63, to provide a more consistent breakdown voltage and reduce response time. Unfortunately, these devices may have higher breakdown voltages and longer response times than varistors. However, they can handle significantly higher fault currents and withstand multiple high-voltage hits (for example, from lightning) without significant degradation.
Multi-layer varistor
Multi-layer varistor (MLV) devices provide electrostatic discharge protection to electronic circuits from low to medium energy transients in sensitive equipment operating at 0-120 volts dc. They have peak current ratings from about 20 to 500 amperes, and peak energy ratings from 0.05 to 2.5 joules.ratings from 0.05 to 2.5 joules.

2015年11月9日星期一

metal oxide varistor application with high quality on xatge.com

In general, the primary case of varistor breakdown is localized heating caused as an effect of thermal runaway. metal oxide varistor application is to a lack of conformity in individual grain-boundary junctions, which leads to the failure of dominant current paths under thermal stress. If the energy in a transient pulse (normally measured in joules)MOV Block is too high, the device may melt, burn, vaporize, or otherwise be damaged or destroyed. This (catastrophic) failure occurs when "Absolute Maximum Ratings" in manufacturer's data-sheet are significantly exceeded.

2015年11月4日星期三

Electrical characteristics of varistor metal oxide

varistor metal oxide remains non-conductive as a shunt-mode device during normal operation when the voltage across it remains well below its "clamping voltage", thus varistors are typically used for suppressing line voltage surges. However, a polymer arrester may not be able to successfully limit a very large surge from an event like a lightning strike where the energy involved is many orders of magnitude greater than it can handle. Follow-through current resulting from a strike may generate excessive current that completely destroys the varistor.
Lesser surges still degrade it, however. Degradation is defined by manufacturer's life-expectancy charts that relate current, time and number of transient pulses. The main parameter affecting varistor life expectancy is its energy (Joule) rating. As the energy rating increases, its life expectancy typically increases exponentially, the number of transient pulses that it can accommodate increases and the "clamping voltage" it provides during each transient decreases. The probability of catastrophic failure can be reduced by increasing the rating, either by using a single varistor of higher rating or by connecting more devices in parallel. A varistor is typically deemed to be fully degraded when its "clamping voltage" has changed by 10%. In this condition it is not visibly damaged and it remains functional (no catastrophic failure).